论文标题
二维Hubbard模型的定量功能重归化组描述
Quantitative functional renormalization-group description of the two-dimensional Hubbard model
论文作者
论文摘要
使用功能重量化组(FRG)的领先算法实现,以在二维晶格上进行交互,我们对其针对Hubbard模型的定量可靠性进行了详细的分析。特别是,我们表明,最近引入的自我能源和两粒子顶点的FRG流程方程的多旋转扩展可以与二维晶格问题进行精确匹配。关于以前的基于FRG的计算方案的完善依赖于对两粒子顶点的频率和动量依赖的准确处理,该频率和动量依赖性结合了高频渐近性的适当包含与所谓的截短的unity unity frg,以实现动量依赖性。作为必不可少的步骤,采用后一种方案要求对自能量的流程方程进行一致的修改。我们定量地比较了我们的FRG结果的自我能力和动量依赖性敏感性以及镶木材料近似的相应解决方案与确定性量子蒙特卡洛数据,这表明FRG非常准确至中等相互作用强度。提出的方法学改进说明了如何将FRG流到二维问题的定量水平上,从而为更通用系统的应用提供了可靠的基础。
Using a leading algorithmic implementation of the functional renormalization group (fRG) for interacting fermions on two-dimensional lattices, we provide a detailed analysis of its quantitative reliability for the Hubbard model. In particular, we show that the recently introduced multiloop extension of the fRG flow equations for the self-energy and two-particle vertex allows for a precise match with the parquet approximation also for two-dimensional lattice problems. The refinement with respect to previous fRG-based computation schemes relies on an accurate treatment of the frequency and momentum dependences of the two-particle vertex, which combines a proper inclusion of the high-frequency asymptotics with the so-called truncated unity fRG for the momentum dependence. The adoption of the latter scheme requires, as an essential step, a consistent modification of the flow equation of the self-energy. We quantitatively compare our fRG results for the self-energy and momentum-dependent susceptibilities and the corresponding solution of the parquet approximation to determinant quantum Monte Carlo data, demonstrating that the fRG is remarkably accurate up to moderate interaction strengths. The presented methodological improvements illustrate how fRG flows can be brought to a quantitative level for two-dimensional problems, providing a solid basis for the application to more general systems.