论文标题

基于IoT驱动的智能孤立微电网中深度加固学习的动态能量调度

Dynamic Energy Dispatch Based on Deep Reinforcement Learning in IoT-Driven Smart Isolated Microgrids

论文作者

Lei, Lei, Tan, Yue, Dahlenburg, Glenn, Xiang, Wei, Zheng, Kan

论文摘要

微电网(MGS)是小的局部功率网格,可以独立于较大的公用电网工作。结合物联网(IoT),智能MG可以利用感官数据和机器学习技术来用于智能能源管理。本文重点介绍了带有柴油发电机(DGS),光伏(PV)面板和电池的IoT驱动的智能隔离型MG的深入增强学习(DRL)的能量调度。通过从历史数据中学习以捕获未来的电力消耗和可再生发电的不确定性来制定和解决有限的部分可观察的马尔可夫决策过程(POMDP)模型。为了处理DRL算法的不稳定性问题和有限的Horizo​​n模型的独特特征,两种新型的DRL算法,即有限的Horizo​​n深层确定性策略梯度(FH-DDPG)和有限的培训重新验证的重复性决定性决定性策略梯度(FH-RDPG),而没有降低能量的策略,并且可以派发派遣能力。进行了使用实际隔离MG数据的案例研究,其中将所提出的算法的性能与其他基线DRL和非DRL算法进行了比较。此外,不确定性对MG性能的影响分别分为两个级别并进行了评估。

Microgrids (MGs) are small, local power grids that can operate independently from the larger utility grid. Combined with the Internet of Things (IoT), a smart MG can leverage the sensory data and machine learning techniques for intelligent energy management. This paper focuses on deep reinforcement learning (DRL)-based energy dispatch for IoT-driven smart isolated MGs with diesel generators (DGs), photovoltaic (PV) panels, and a battery. A finite-horizon Partial Observable Markov Decision Process (POMDP) model is formulated and solved by learning from historical data to capture the uncertainty in future electricity consumption and renewable power generation. In order to deal with the instability problem of DRL algorithms and unique characteristics of finite-horizon models, two novel DRL algorithms, namely, finite-horizon deep deterministic policy gradient (FH-DDPG) and finite-horizon recurrent deterministic policy gradient (FH-RDPG), are proposed to derive energy dispatch policies with and without fully observable state information. A case study using real isolated MG data is performed, where the performance of the proposed algorithms are compared with the other baseline DRL and non-DRL algorithms. Moreover, the impact of uncertainties on MG performance is decoupled into two levels and evaluated respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源