论文标题

行星旋转速率对陆地系外行星的反射率和热发射光谱的影响

The Impact of Planetary Rotation Rate on the Reflectance and Thermal Emission Spectrum of Terrestrial Exoplanets Around Sun-like Stars

论文作者

Guzewich, Scott D., Lustig-Yaeger, Jacob, Davis, Christopher Evan, Kopparapu, Ravi Kumar, Way, Michael J., Meadows, Victoria S.

论文摘要

需要稳健的大气和辐射转移模型才能正确解释陆生外行星的反射光和热发射光谱。这将有助于打破驱动行星气候的众多大气,行星和恒星因素之间的观察性变性。在这里,我们使用洛克-3D一般循环模型模拟了越来越缓慢的旋转周期,从地球样到完全太阳同步的旋转周期越来越缓慢地模拟了阳光周围的地球状世界。然后,我们提供这些结果作为光谱行星模型(SPM)的输入,该模型采用智能辐射转移模型来模拟行星的光谱,因为它可以从未来的基于空间的望远镜中观察到。我们发现,减慢行星旋转速率的主要可观察到的作用是改变的云分布,高度和不透明度,随后通过改变生物含量不足的气体物种的吸收带深度(例如H2O,O2和O3)来驱动光谱的许多变化。我们还确定了中红外H2O吸收/发射线中同步旋转世界的潜在诊断特征。

Robust atmospheric and radiative transfer modeling will be required to properly interpret reflected light and thermal emission spectra of terrestrial exoplanets. This will help break observational degeneracies between the numerous atmospheric, planetary, and stellar factors that drive planetary climate. Here we simulate the climates of Earth-like worlds around the Sun with increasingly slow rotation periods, from Earth-like to fully Sun-synchronous, using the ROCKE-3D general circulation model. We then provide these results as input to the Spectral Planet Model (SPM), which employs the SMART radiative transfer model to simulate the spectra of a planet as it would be observed from a future space-based telescope. We find that the primary observable effects of slowing planetary rotation rate are the altered cloud distributions, altitudes, and opacities which subsequently drive many changes to the spectra by altering the absorption band depths of biologically-relevant gas species (e.g., H2O, O2, and O3). We also identify a potentially diagnostic feature of synchronously rotating worlds in mid-infrared H2O absorption/emission lines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源