论文标题

在受限的约旦平面上以奇数特征

On the restricted Jordan plane in odd characteristic

论文作者

Andruskiewitsch, Nicolás, Pollastri, Héctor Peña

论文摘要

在积极的特征中,约旦平面涵盖了一个有限的尼科尔斯代数,该代数由Cibils,Lauve和Witherspoon描述,我们称之为受限的Jordan平面。在本文中,特征很奇怪。提出了受限约旦平面的Drinfeld双重关系的定义关系,并确定其简单的模块。引入了约旦平面双重名称的HOPF代数,并描述了各种量子frobenius地图。有限维尼古尔斯代数中间及其受限版本之间进行了分类。给出了约旦平面分级双重的定义关系。

In positive characteristic the Jordan plane covers a finite-dimensional Nichols algebra that was described by Cibils, Lauve and Witherspoon and we call the restricted Jordan plane. In this paper the characteristic is odd. The defining relations of the Drinfeld double of the restricted Jordan plane are presented and its simple modules are determined. A Hopf algebra that deserves the name of double of the Jordan plane is introduced and various quantum Frobenius maps are described. The finite-dimensional pre-Nichols algebras intermediate between the Jordan plane and its restricted version are classified. The defining relations of the graded dual of the Jordan plane are given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源