论文标题
Reissner-NordströmSpaceTime中的反胎识别的经典工具
Classical Tools for Antipodal Identification in Reissner-Nordström Spacetime
论文作者
论文摘要
我们通过开发定义相应的量子场理论(QFT)所需的经典工具来扩展对黑洞(RN)时空的抗焦点鉴定的讨论。我们在散射系数方面在RN背景中求解了无质量的klein-gordon方程,并提供了一个程序,用于构建RN任意分析扩展的解决方案。最大扩展解决方案的行为高度取决于内部和外部视野之间散射的系数,因此我们呈现这些数量的低频行为和数值解。我们发现,对于足够低的频率,在每个范围内纯正或负频率的溶液的场幅度幅度均在通过内部和外部视野后仅获得一相,而在较高的频率下,振幅将倾向于成倍增长到未来或向前,并在另一个方向上呈衰减。无论如何,我们始终可以为RN的任何有限分析扩展构建全球对称和反对称溶液的基础。我们已经根据正面和负频率解决方案来表征此基础,以构建相应的QFT。
We extend the discussion of the antipodal identification of black holes to the Reissner-Nordström (RN) spacetime by developing the classical tools necessary to define the corresponding quantum field theory (QFT). We solve the massless Klein-Gordon equation in the RN background in terms of scattering coefficients and provide a procedure for constructing a solution for an arbitrary analytic extension of RN. The behavior of the maximally extended solution is highly dependent upon the coefficients of scattering between the inner and outer horizons, so we present the low-frequency behavior of, and numerical solutions for, these quantities. We find that, for low enough frequency, field amplitudes of solutions with purely positive or negative frequency at each horizon will acquire only a phase after passing both the inner and outer horizons, while at higher frequencies the amplitudes will tend to grow exponentially either to the future or to the past, and decay exponentially in the other direction. Regardless, we can always construct a basis of globally antipodal symmetric and antisymmetric solutions for any finite analytic extension of RN. We have characterized this basis in terms of positive and negative frequency solutions for future use in constructing the corresponding QFT.