论文标题
物质场汉密尔顿人I的量子相图:忠诚,距离距离和纠缠
Quantum Phase Diagrams of Matter-Field Hamiltonians I: Fidelity, Bures Distance, and Entanglement
论文作者
论文摘要
建立了一般程序,以计算有限物质领域的哈密顿模型的量子相图。与模型的不同对称性相关的最小能量表面是根据物质场耦合强度的函数计算的。通过基态波函数,人们在参数方面寻找最小的保真度或最大距离距离表面,而从中,这些表面的临界区域表征有限的量子相变。按照此过程的$ n_a = 1 $和$ n_a = 4 $粒子,计算了量子相图,该量子相图是针对3级系统的总体化Tavis-Cummings和Dicke模型计算的,与$ 2 $的电磁场相互作用。对于$ n_a = 1 $,降低的物质密度矩阵使我们能够以$ 2 $ -SIMPLEX(与一般三维密度矩阵相关联)以不同的$ 3 $级别的原子配置,以及对问题和现场室之间的量子相关的测量。由于可以通过实验测量职业概率,因此可以建立有限系统的量子相图。
A general procedure is established to calculate the quantum phase diagrams for finite matter-field Hamiltonian models. The minimum energy surface associated to the different symmetries of the model is calculated as a function of the matter-field coupling strengths. By means of the ground state wave functions, one looks for minimal fidelity or maximal Bures distance surfaces in terms of the parameters, and from them the critical regions of those surfaces characterize the finite quantum phase transitions. Following this procedure for $N_a=1$ and $N_a=4$ particles, the quantum phase diagrams are calculated for the generalised Tavis-Cummings and Dicke models of 3-level systems interacting dipolarly with $2$ modes of electromagnetic field. For $N_a=1$, the reduced density matrix of the matter allows us to determine the phase regions in a $2$-simplex (associated to a general three dimensional density matrix), on the different $3$-level atomic configurations, together with a measurement of the quantum correlations between the matter and field sectors. As the occupation probabilities can be measured experimentally, the existence of a quantum phase diagram for a finite system can be established.