论文标题
$γ_0(n)$的单数模量痕迹满足的复发关系
Recurrence relations satisfied by the traces of singular moduli for $Γ_0(N)$
论文作者
论文摘要
我们计算模块曲线上模块化方程的除数$γ_0(n)\ backslash \ mathbb h^*$,然后找到hauptModul的模块化痕迹满足的复发关系,用于任何一致性子组$γ_0(n)属的属。我们还介绍了$γ$ - 等价性和$γ$还原形式的概念和属性。使用这些,我们可以明确计算$ n = 2、3、4、5 $的复发关系。
We compute the divisor of the modular equation on the modular curve $Γ_0(N) \backslash \mathbb H^*$ and then find recurrence relations satisfied by the modular traces of the Hauptmodul for any congruence subgroup $Γ_0(N)$ of genus zero. We also introduce the notions and properties of $Γ$-equivalence and $Γ$-reduced forms about binary quadratic forms. Using these, we can explicitly compute the recurrence relations for $N = 2, 3, 4, 5$.