论文标题
倾向于用量化梯度更清晰的一阶对手
Towards Sharper First-Order Adversary with Quantized Gradients
论文作者
论文摘要
尽管深度神经网络(DNN)在广泛的机器学习和数据挖掘任务中取得了巨大的成功,但最近的研究表明,这种强大的工具容易受到恶意制作的对抗性示例。到目前为止,对抗性训练一直是针对对抗性攻击的最成功的防御。为了增加对抗性鲁棒性,可以通过一阶方法生成的良性和对抗性示例的组合来训练DNN。但是,在最先进的一阶攻击中,带有符号梯度的对抗示例保留了每个梯度组件的符号信息,但丢弃了组件之间的相对大小。在这项工作中,我们用量化梯度代替符号梯度。梯度量化不仅可以保留符号信息,而且还可以保持组件之间的相对幅度。实验显示了带有量化梯度的白框一阶攻击优于其在多个数据集上的符号梯度的变体。值得注意的是,我们的BLOB \ _QG攻击在MNIST挑战中的秘密MNIST模型上获得了$ 88.32 \%$的准确性,并且它在白盒攻击的排行榜上胜过所有其他方法。
Despite the huge success of Deep Neural Networks (DNNs) in a wide spectrum of machine learning and data mining tasks, recent research shows that this powerful tool is susceptible to maliciously crafted adversarial examples. Up until now, adversarial training has been the most successful defense against adversarial attacks. To increase adversarial robustness, a DNN can be trained with a combination of benign and adversarial examples generated by first-order methods. However, in state-of-the-art first-order attacks, adversarial examples with sign gradients retain the sign information of each gradient component but discard the relative magnitude between components. In this work, we replace sign gradients with quantized gradients. Gradient quantization not only preserves the sign information, but also keeps the relative magnitude between components. Experiments show white-box first-order attacks with quantized gradients outperform their variants with sign gradients on multiple datasets. Notably, our BLOB\_QG attack achieves an accuracy of $88.32\%$ on the secret MNIST model from the MNIST Challenge and it outperforms all other methods on the leaderboard of white-box attacks.