论文标题

看起来迷人:在全球和本地关注的异质摄像机网络中的车辆重新ID

Looking GLAMORous: Vehicle Re-Id in Heterogeneous Cameras Networks with Global and Local Attention

论文作者

Suprem, Abhijit, Pu, Calton

论文摘要

车辆重新识别(RE-ID)是现代监视摄像机网络的基本问题。车辆重新ID的现有方法通过组合多个子网和损失,利用全球功能和本地功能来重新ID。在本文中,我们提出了Re-ID的魅力或全球和本地关注模块。魅力在统一模型中同时执行全球和本地特征提取,以在各种对抗条件和数据集(MAPS 80.34,76.48,77.15上分别在Veri-776上,分别为VIR-776,VRIC和VERI-WILD)实现车辆重新ID的最新性能(MAPS 80.34,76.48,77.15)。魅力引入了几种贡献:一种更好的主干结构方法,它胜过最近的方法,小组和层归一化,以解决重新ID的冲突损失目标,一个新型的全球注意力集体模块,用于全球特征提取的新型全球注意力模块,以及一个新的基于零件的局部特征提取的本地注意模块,不需要监督。此外,魅力是一种紧凑而快速的模型,较小10倍,同时提供25%的性能。

Vehicle re-identification (re-id) is a fundamental problem for modern surveillance camera networks. Existing approaches for vehicle re-id utilize global features and local features for re-id by combining multiple subnetworks and losses. In this paper, we propose GLAMOR, or Global and Local Attention MOdules for Re-id. GLAMOR performs global and local feature extraction simultaneously in a unified model to achieve state-of-the-art performance in vehicle re-id across a variety of adversarial conditions and datasets (mAPs 80.34, 76.48, 77.15 on VeRi-776, VRIC, and VeRi-Wild, respectively). GLAMOR introduces several contributions: a better backbone construction method that outperforms recent approaches, group and layer normalization to address conflicting loss targets for re-id, a novel global attention module for global feature extraction, and a novel local attention module for self-guided part-based local feature extraction that does not require supervision. Additionally, GLAMOR is a compact and fast model that is 10x smaller while delivering 25% better performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源