论文标题

N点球函数和渐近边界KZB方程

N-point spherical functions and asymptotic boundary KZB equations

论文作者

Stokman, Jasper, Reshetikhin, Nicolai

论文摘要

让$ g $是有限中心的一个分裂的真实连接的谎言组。在本文的第一部分中,我们定义和研究形式的基本球形函数。它们是基础球形功能的正式功率系列类似物,在$ g $上,准简单可允许的$ g $ - 表述的作用被Verma模块所取代。对于通用的最高权重,我们以Harish-Chandra系列表示正式的基本球形功能,并将它们集成到$ G $的常规部分的球形功能。我们证明它们为量子双曲线calogero-moser系统的自旋版本生成本征态。 在本文的第二部分中,我们定义和研究全球和正式基本球形功能的特殊子类,我们称之为全球和正式的$ n $ - 点球形功能。正式的$ n $ - 点球函数是在位置变量倾向于无穷大时,是圆柱上边界wess-zumino-witten保形场理论的相关函数的限制。我们根据与主序列表示相关的差异差异互动的组成来构建全局球形函数,并用Eisenstein积分来表达它们。我们表明,与$ n $ - 点球函数相关的自旋量子量子calogero-moser系统的本征状态也是通勤一阶差分算子家族的常见征征,我们称之为渐近边界knizhizhizhizhinik-zamolodchikov-bernard运算符。这些操作员以$θ$折叠的经典动力学$ r $ $ $ $ $ $ $ $ $ $ $ $ $ k $ - matrices明确表示。

Let $G$ be a split real connected Lie group with finite center. In the first part of the paper we define and study formal elementary spherical functions. They are formal power series analogues of elementary spherical functions on $G$ in which the role of the quasi-simple admissible $G$-representations is replaced by Verma modules. For generic highest weight we express the formal elementary spherical functions in terms of Harish-Chandra series and integrate them to spherical functions on the regular part of $G$. We show that they produce eigenstates for spin versions of quantum hyperbolic Calogero-Moser systems. In the second part of the paper we define and study special subclasses of global and formal elementary spherical functions, which we call global and formal $N$-point spherical functions. Formal $N$-point spherical functions arise as limits of correlation functions for boundary Wess-Zumino-Witten conformal field theory on the cylinder when the position variables tend to infinity. We construct global $N$-point spherical functions in terms of compositions of equivariant differential intertwiners associated with principal series representations, and express them in terms of Eisenstein integrals. We show that the eigenstates of the spin quantum Calogero-Moser system associated to $N$-point spherical functions are also common eigenfunctions of a commuting family of first-order differential operators, which we call asymptotic boundary Knizhnik-Zamolodchikov-Bernard operators. These operators are explicitly given in terms of $θ$-folded classical dynamical $r$-matrices and associated dynamical $k$-matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源