论文标题
通用量子搜索中的过渡概率哈密顿发展
Transition Probabilities in Generalized Quantum Search Hamiltonian Evolutions
论文作者
论文摘要
量子计算中的一个相关问题涉及根据适当驾驶哈密顿式指定的量子机械演化,可以将源状态驱动到目标状态的速度。在本文中,我们详细研究了在连续时间量子搜索问题中计算从源状态到目标状态的过渡概率所需的计算方面,该量子量搜索问题由多参数广义的时间独立于时间独立的哈密顿式化。特别是,根据速度(最小搜索时间)和保真度(最大成功概率)量化量子搜索的性能,我们考虑了从广义的哈密顿式出现的各种特殊情况。在最佳量子搜索的背景下,我们发现在最小搜索时间(众所周知的Farhi-Gutmann Analog量子搜索算法)方面,可以胜过表现。相反,在几乎最佳的量子搜索的上下文中,我们表明,如果仅寻求足够高的成功概率,则可以识别能够超过最佳搜索算法的亚最佳搜索算法。最后,我们简要讨论了速度和忠诚之间权衡的相关性,重点是对量子信息处理的理论和实际重要性问题。
A relevant problem in quantum computing concerns how fast a source state can be driven into a target state according to Schrödinger's quantum mechanical evolution specified by a suitable driving Hamiltonian. In this paper, we study in detail the computational aspects necessary to calculate the transition probability from a source state to a target state in a continuous time quantum search problem defined by a multi-parameter generalized time-independent Hamiltonian. In particular, quantifying the performance of a quantum search in terms of speed (minimum search time) and fidelity (maximum success probability), we consider a variety of special cases that emerge from the generalized Hamiltonian. In the context of optimal quantum search, we find it is possible to outperform, in terms of minimum search time, the well-known Farhi-Gutmann analog quantum search algorithm. In the context of nearly optimal quantum search, instead, we show it is possible to identify sub-optimal search algorithms capable of outperforming optimal search algorithms if only a sufficiently high success probability is sought. Finally, we briefly discuss the relevance of a tradeoff between speed and fidelity with emphasis on issues of both theoretical and practical importance to quantum information processing.