论文标题
Cohen-Macaulay Specht理想的规律性
Regularity of Cohen-Macaulay Specht ideals
论文作者
论文摘要
对于{\ mathbb n} $中的分区$λ$,让$ i^{\ rm sp}_λ$是$ r = k [x_1,\ ldots,x_n] $的理想的理想。在上一篇论文中,第二作者表明,如果$ r/i^{\ rm sp}_λ$是cohen-macaulay,那么$λ$是$(n-d,1,\ ldots,1),(n-d,d)$或$(n-d)$或$(d,d,d,d,d,d,1)$,并且如果$ car car car car car)= 0 $ car)= 0 $。在本文中,我们计算了$ r/i^{\ rm sp}_λ$的希尔伯特系列$λ=(n-d,d)$或$(d,d,d,d,1)$。因此,当它是Cohen-Macaulay时,我们获得了$ r/i^{\ rm sp}_λ$的Castelnuovo-Mumford的规律性。特别是,$ i^{\ rm sp} _ {(d,d,d,1)} $在Cohen-Macaulay案例中具有$(d+2)$ - 线性分辨率。
For a partition $λ$ of $n \in {\mathbb N}$, let $I^{\rm Sp}_λ$ be the ideal of $R=K[x_1,\ldots,x_n]$ generated by all Specht polynomials of shape $λ$. In the previous paper, the second author showed that if $R/I^{\rm Sp}_λ$ is Cohen-Macaulay, then $λ$ is either $(n-d,1,\ldots,1),(n-d,d)$, or $(d,d,1)$, and the converse is true if ${\rm char}(K)=0$. In this paper, we compute the Hilbert series of $R/I^{\rm Sp}_λ$ for $λ=(n-d,d)$ or $(d,d,1)$. Hence, we get the Castelnuovo-Mumford regularity of $R/I^{\rm Sp}_λ$, when it is Cohen-Macaulay. In particular, $I^{\rm Sp}_{(d,d,1)}$ has a $(d+2)$-linear resolution in the Cohen-Macaulay case.