论文标题
抛物线几何形状中的特殊指标和尺度
Special metrics and scales in parabolic geometry
论文作者
论文摘要
鉴于抛物线几何形状,有时可以找到以某些不变条件为特征的特殊指标。例如,在保形几何形状中,一个人要求在形式类别中使用爱因斯坦度量。爱因斯坦指标具有特殊特性,即从抛物线几何形状的意义上将其大地测量学被区分为无参数曲线。该属性是爱因斯坦指标的特征。在本文中,我们启动了针对其他抛物线几何形状的相应现象的研究,尤其是针对Hypersurface CR和接触典礼案例的研究。
Given a parabolic geometry, it is sometimes possible to find special metrics characterised by some invariant conditions. In conformal geometry, for example, one asks for an Einstein metric in the conformal class. Einstein metrics have the special property that their geodesics are distinguished, as unparameterised curves, in the sense of parabolic geometry. This property characterises the Einstein metrics. In this article we initiate a study of corresponding phenomena for other parabolic geometries, in particular for the hypersurface CR and contact Legendrean cases.