论文标题
Minkowski的重量和绿色复合品种的Grothendieck组
Minkowski weights and the Grothendieck group of a toric variety
论文作者
论文摘要
对于风扇$δ$,我们将Grothendieck重量从$δ$到$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ mathbb {z} $引入,形成了Minkowski权重的K理论模拟,并描述了操作$ k $ - 完整的磨碎的多种多样的$ k $。我们为这些权重提供明确的平衡条件和产品公式,并描述与其他基于粉丝的不变的关系。应用于在感谢您的表面上的矢量束,以及对Schon subvarieties的Euler特征的计算。
For a fan $Δ$, we introduce Grothendieck weights as a ring of functions from $Δ$ to $\mathbb{Z}$ that form a K-theoretic analogue of Minkowski weights and describe the operational $K$-theory of a complete toric variety. We give an explicit balancing condition and product formula for these weights, and describe relationships with other fan-based invariants. Applications are given to vector bundles on a toric surface, and to the calculation of Euler characteristics on schon subvarieties.