论文标题

嵌套的重心坐标系作为显式特征图

Nested Barycentric Coordinate System as an Explicit Feature Map

论文作者

Gottlieb, Lee-Ad, Kaufman, Eran, Kontorovich, Aryeh, Nivasch, Gabriel, Pele, Ofir

论文摘要

我们提出了一种新的嵌入方法,该方法特别适合于样本量大大超过环境维度的设置。我们的技术包括将空间划分为简单,然后将数据点嵌入与简单的Barycentric坐标相对应的特征中。然后,我们在从简理获得的丰富特征空间中训练线性分类器。决策边界可能是高度非线性的,尽管它在每个单纯形内是线性的(因此总体上是分段线性的)。此外,我们的方法可以近似任何凸体。我们基于经验边缘和一种新型混合样品压缩技术的概括界限。广泛的经验评估表明,我们的方法始终优于一系列流行的内核嵌入方法。

We propose a new embedding method which is particularly well-suited for settings where the sample size greatly exceeds the ambient dimension. Our technique consists of partitioning the space into simplices and then embedding the data points into features corresponding to the simplices' barycentric coordinates. We then train a linear classifier in the rich feature space obtained from the simplices. The decision boundary may be highly non-linear, though it is linear within each simplex (and hence piecewise-linear overall). Further, our method can approximate any convex body. We give generalization bounds based on empirical margin and a novel hybrid sample compression technique. An extensive empirical evaluation shows that our method consistently outperforms a range of popular kernel embedding methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源