论文标题

肺癌复发预测的成像和基因组学的多模式融合

Multimodal fusion of imaging and genomics for lung cancer recurrence prediction

论文作者

Subramanian, Vaishnavi, Do, Minh N., Syeda-Mahmood, Tanveer

论文摘要

早期患者的肺癌复发率很高。传统上,使用基因组学或放射学图像的单一模态信息来了解肺癌患者的术后复发。我们研究了多模式融合在此任务中的潜力。通过结合计算机断层扫描(CT)图像和基因组学,我们使用线性COX比例危害模型和弹性净正则化证明了复发的预测。我们研究了130名患者的最近的非小细胞肺癌(NSCLC)放射基因组学数据集,并观察到一致性索引值最高可达10%。采用来自神经网络文献的非线性方法,例如多层感知器和视觉问题回答融合模块,并不能始终如一地提高性能。这表明需要更好地适应这种生物环境的更大的多模式数据集和融合技术。

Lung cancer has a high rate of recurrence in early-stage patients. Predicting the post-surgical recurrence in lung cancer patients has traditionally been approached using single modality information of genomics or radiology images. We investigate the potential of multimodal fusion for this task. By combining computed tomography (CT) images and genomics, we demonstrate improved prediction of recurrence using linear Cox proportional hazards models with elastic net regularization. We work on a recent non-small cell lung cancer (NSCLC) radiogenomics dataset of 130 patients and observe an increase in concordance-index values of up to 10%. Employing non-linear methods from the neural network literature, such as multi-layer perceptrons and visual-question answering fusion modules, did not improve performance consistently. This indicates the need for larger multimodal datasets and fusion techniques better adapted to this biological setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源