论文标题
使用EEG信号预测癫痫发作的机器学习:评论
Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review
论文作者
论文摘要
随着人工智能(AI)和机器学习(ML)技术的进步,研究人员正在努力利用这些技术来推进临床实践。医疗保健中的关键目标之一是对及时提供预防干预措施的疾病的早期发现和预测。癫痫病尤其是这种情况,其特征是复发和不可预测的癫痫发作。如果可以提前预测癫痫发作的不良后果,则可以免除患者的不利后果。尽管进行了数十年的研究,但癫痫发作预测仍然是一个未解决的问题。这至少部分是由于无法解决问题的数据数量不足。基于ML的算法有令人兴奋的新发展,这些算法有可能在早期且准确的癫痫发作预测中提供范式转变。在这里,我们在使用脑电图信号的癫痫发作的早期预测中对最先进的ML技术进行了全面综述。我们将在当前研究中确定差距,挑战和陷阱,并推荐未来的方向。
With the advancement in artificial intelligence (AI) and machine learning (ML) techniques, researchers are striving towards employing these techniques for advancing clinical practice. One of the key objectives in healthcare is the early detection and prediction of disease to timely provide preventive interventions. This is especially the case for epilepsy, which is characterized by recurrent and unpredictable seizures. Patients can be relieved from the adverse consequences of epileptic seizures if it could somehow be predicted in advance. Despite decades of research, seizure prediction remains an unsolved problem. This is likely to remain at least partly because of the inadequate amount of data to resolve the problem. There have been exciting new developments in ML-based algorithms that have the potential to deliver a paradigm shift in the early and accurate prediction of epileptic seizures. Here we provide a comprehensive review of state-of-the-art ML techniques in early prediction of seizures using EEG signals. We will identify the gaps, challenges, and pitfalls in the current research and recommend future directions.