论文标题
在窃窃私语模式谐振器中观察Eckhaus不稳定
Observation of the Eckhaus Instability in Whispering-Gallery Mode Resonators
论文作者
论文摘要
Eckhaus的不稳定性是非线性时空模式的二次不稳定性,其中高波动的周期性解决方案对小波动扰动变得不稳定。我们在这封信中表明,这种不稳定性可以在用超高$ q $ hispering-gallery模式谐振器产生的Kerr梳子中发生。在我们的实验中,亚临界图灵模式(卷)会在激光失调的变化中经历Eckhaus不稳定性,从而导致具有长寿命的裂纹模式。在光谱域中,这会导致亚稳态的kerr梳子动力学,其时间尺度可能大于一分钟。该超慢时间尺度至少比腔内光子寿命大七个数量级,并且与迄今为止在腔非线性光学元素中报道的所有短暂性行为形成鲜明对比,在腔非光学上,通常只有少数光子寿命长(即在PS范围内)。我们表明,由于Eckhaus不稳定性的结果,Lugiato-Lefever模型很好地解释了这种现象学。发现我们的理论分析与实验测量非常吻合。
The Eckhaus instability is a secondary instability of nonlinear spatiotemporal patterns in which high-wavenumber periodic solutions become unstable against small-wavenumber perturbations. We show in this letter that this instability can take place in Kerr combs generated with ultra-high $Q$ whispering-gallery mode resonators. In our experiment, sub-critical Turing patterns (rolls) undergo Eckhaus instabilities upon changes in the laser detuning leading to cracking patterns with long-lived transients. In the spectral domain, this results in a metastable Kerr comb dynamics with a timescale that can be larger than one minute. This ultra-slow timescale is at least seven orders of magnitude larger than the intracavity photon lifetime, and is in sharp contrast with all the transient behaviors reported so far in cavity nonlinear optics, that are typically only few photon lifetimes long (i.e., in the ps range). We show that this phenomenology is well explained by the Lugiato-Lefever model, as the result of an Eckhaus instability. Our theoretical analysis is found to be in excellent agreement with the experimental measurements.