论文标题

Bauer-武术不变和Galois对称性

Bauer--Furuta invariants and Galois symmetries

论文作者

Szymik, Markus

论文摘要

从功能上的角度研究了光滑4个manifolds的鲍尔武器不变的。这导致了对等效的Bauer-Furuta不变的定义,以进行紧凑的谎言组动作。这些是在涵盖情况的Galois中进行的。我们表明,所有商的普通不变性是由覆盖歧管的那位不变性决定的。如果可以用塞伯格(Seiberg)的不变性识别鲍尔武术不变性,这意味着在Galois覆盖情况下不变的人之间的关系,并且可以通过椭圆形表面进行说明。还可以解释说,等效的鲍尔(Furuta Infortiants)可能包含比普通不变的更多信息。

The Bauer-Furuta invariants of smooth 4-manifolds are investigated from a functorial point of view. This leads to a definition of equivariant Bauer-Furuta invariants for compact Lie group actions. These are studied in Galois covering situations. We show that the ordinary invariants of all quotients are determined by the equivariant invariants of the covering manifold. In the case where the Bauer-Furuta invariants can be identified with the Seiberg-Witten invariants, this implies relations between the invariants in Galois covering situations, and these can be illustrated through elliptic surfaces. It is also explained that the equivariant Bauer--Furuta invariants potentially contain more information than the ordinary invariants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源