论文标题

适用于复杂系统的自适应随机延续,并进行了修改

Adaptive stochastic continuation with a modified lifting procedure applied to complex systems

论文作者

Willers, Clemens, Thiele, Uwe, Archer, Andrew J., Lloyd, David J. B., Kamps, Oliver

论文摘要

许多发生在自然或社会科学或经济学中的复杂系统经常在微观层面(例如基于晶状体或代理的模型)上描述。为了分析此类系统的状态及其分叉结构在宏观可观察的水平上,必须依靠无方程的方法等无方程方法。在这里,我们研究了如何通过自适应选择算法的参数来改善随机延续技术。这使得一个人可以非常准确地获得分叉图,尤其是在分叉点附近。我们介绍了起升技术,该技术产生具有自然生长结构的微观状态,这对于对宏观量的可靠评估至关重要。我们展示了如何通过使用合适的线性拟合来计算波动函数的固定点。此过程提供了统计误差的简单度量。我们通过将方法应用于(i)在两个维度的分析中,(ii)主动ISING模型和(iii)随机的Swift-Hohenberg模型来证明这些改进。我们通过讨论该技术的能力和剩余问题来得出结论。

Many complex systems occurring in the natural or social sciences or economics are frequently described on a microscopic level, e.g., by lattice- or agent-based models. To analyze the states of such systems and their bifurcation structure on the level of macroscopic observables, one has to rely on equation-free methods like stochastic continuation. Here, we investigate how to improve stochastic continuation techniques by adaptively choosing the parameters of the algorithm. This allows one to obtain bifurcation diagrams quite accurately, especially near bifurcation points. We introduce lifting techniques which generate microscopic states with a naturally grown structure, which can be crucial for a reliable evaluation of macroscopic quantities. We show how to calculate fixed points of fluctuating functions by employing suitable linear fits. This procedure offers a simple measure of the statistical error. We demonstrate these improvements by applying the approach in analyses of (i) the Ising model in two dimensions, (ii) an active Ising model, and (iii) a stochastic Swift-Hohenberg model. We conclude by discussing the abilities and remaining problems of the technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源