论文标题
磁化细丝模型用于发散等离子体镜头
Magnetized Filament Models for Diverging Plasma Lenses
论文作者
论文摘要
众所周知,球形等离子体透镜模型会遭受严重的过压问题,其中一些观察结果需要透镜,中央压力的距离超过了数百万次。镜头模型可以通过两种方式解决过度压力的问题:存在一种限制机制来对抗镜头的内部压力,或者镜头具有独特的几何形状,因此投影的柱密度对观察者来说似乎很大。这是用高度不对称的模型(例如边缘纸或细丝)的,具有潜在的低量密度。在这项工作的第一部分中,我们研究了非磁性等离子体丝模仿球形晶状体后面看到的源的放大量的能力,并且我们从引力透镜研究中扩展了有关该模型退化的定理。我们发现,对于等离子体镜头,定理会产生非物理电荷密度分布。在工作的第二部分中,我们考虑了等离子体镜头的过压问题。使用磁水动力学,我们开发了一个不受螺旋磁场限制的非自我磨损模型丝。我们在无力极限的情况下使用玩具模型来说明新颖的镜头特性。通常,磁化的细丝可以在观察者方向上充当镜片,其密度最高的事件是由轴线附近的细丝产生的。我们专注于垂直于视线的细丝,可以通过透镜旋转度量观察到环形磁场成分。
Spherical plasma lens models are known to suffer from a severe over-pressure problem, with some observations requiring lenses with central pressures up to millions of times in excess of the ambient ISM. There are two ways that lens models can solve the over-pressure problem: a confinement mechanism exists to counter the internal pressure of the lens, or the lens has a unique geometry, such that the projected column-density appears large to an observer. This occurs with highly asymmetric models, such as edge-on sheets or filaments, with potentially low volume-density. In the first part of this work we investigate the ability of non-magnetized plasma filaments to mimic the magnification of sources seen behind spherical lenses and we extend a theorem from gravitational lens studies regarding this model degeneracy. We find that for plasma lenses, the theorem produces unphysical charge density distributions. In the second part of the work, we consider the plasma lens over-pressure problem. Using magnetohydrodynamics, we develop a non self-gravitating model filament confined by a helical magnetic field. We use toy models in the force-free limit to illustrate novel lensing properties. Generally, magnetized filaments may act as lenses in any orientation with respect to the observer, with the most high density events produced from filaments with axes near the line of sight. We focus on filaments that are perpendicular to the line of sight that show the toroidal magnetic field component may be observed via the lens rotation measure.