论文标题
通过蒙特卡洛树搜索进行最佳FDM工具路径计划
Toward Optimal FDM Toolpath Planning with Monte Carlo Tree Search
论文作者
论文摘要
融合沉积3D打印中最广泛使用的工具路径计划方法将输入模型切成连续的2D层,以构建工具路径。不幸的是,基于切片的方法会引起大量浪费的运动(即挤出器在不打印时移动),尤其是在模型的特征在空间分离时。近年来,我们引入了一种新的范式,该范式使用输入模型上的依赖关系图来表征可行的工具路径的空间,以及几种算法,以搜索此空间以优化了优化目标函数(例如浪费的运动或打印时间)的工具路径。出现的一个自然问题是,在什么情况下,我们可以有效地计算最佳工具路径?在本文中,我们提供了一种用于计算融合沉积建模(FDM)工具路径的算法,该工具路径利用蒙特卡洛树搜索(MCT),这是一种强大的通用方法,用于导航大型搜索空间,保证可以收敛到最佳解决方案。在对打印机几何形状的合理假设下,使我们能够压缩依赖关系图,我们的基于MCTS的算法会收敛以找到最佳工具路径。我们在75个型号的数据集上验证了算法,并在工具路径质量方面与我们以前最佳本地基于搜索的算法相同。在先前的工作中,我们推测本地搜索的性能几乎是最佳的,我们详细介绍了模型和MCT执行的属性,这些属性与本地搜索相比会导致更好或更糟的结果。
The most widely used methods for toolpath planning in fused deposition 3D printing slice the input model into successive 2D layers in order to construct the toolpath. Unfortunately slicing-based methods can incur a substantial amount of wasted motion (i.e., the extruder is moving while not printing), particularly when features of the model are spatially separated. In recent years we have introduced a new paradigm that characterizes the space of feasible toolpaths using a dependency graph on the input model, along with several algorithms to search this space for toolpaths that optimize objective functions such as wasted motion or print time. A natural question that arises is, under what circumstances can we efficiently compute an optimal toolpath? In this paper, we give an algorithm for computing fused deposition modeling (FDM) toolpaths that utilizes Monte Carlo Tree Search (MCTS), a powerful general-purpose method for navigating large search spaces that is guaranteed to converge to the optimal solution. Under reasonable assumptions on printer geometry that allow us to compress the dependency graph, our MCTS-based algorithm converges to find the optimal toolpath. We validate our algorithm on a dataset of 75 models and show it performs on par with our previous best local search-based algorithm in terms of toolpath quality. In prior work we speculated that the performance of local search was near optimal, and we examine in detail the properties of the models and MCTS executions that lead to better or worse results than local search.