论文标题

经历全局层次崩溃的分子块中病毒参数和恒星形成速率的同时演变

Simultaneous evolution of the virial parameter and star formation rate in molecular clumps undergoing global hierarchical collapse

论文作者

Camacho, Vianey, Vázquez-Semadeni, Enrique, Palau, Aina, Busquet, Gemma, Zamora-Avilés, Manuel

论文摘要

我们将经历全球层次崩溃的分子云(MC)的数值模拟中的密集团块和核心进行比较,以在不同的进化阶段的两个MC中观察,管道和G14.225云,以测试GHC风景的能力,以遵循这些能源预算和星形构造活动的早期进化的能力。在模拟中,我们选择一个包含类似于管芯的大小和密度的区域,并发现它通过积聚而发展,开发与$ \ sim 1.6 $ MYR之后G14.225云相似的子结构。 Within this region, we follow the evolution of the Larson ratio $\mathcal{L} \equiv σ_{\rm v}/R^{1/2}$, where $σ_{\rm v}$ is the velocity dispersion and $R$ is the size, the virial parameter $α$, and the star formation activity of the cores/clumps.在模拟中,我们发现随着区域的发展:$ i)$的团块具有$ \ mathcal {l} $,而$α$值首先与管道子结构的$ \ a $ values一致,后来与G14.225的那些; $ ii)$单个内核首先显示出$α$的减少,然后在开始恒星形成时增加; $ iii)$集体,核心/团块的合奏重现了高质量对象的观察到的$α$较低$α$的趋势,以及$ iv)$恒星形成率和星形形成效率单调提高。我们建议这种演变是由于同时丧失了外部驱动的压缩能和自我驱动的运动的增加所致。我们得出的结论是,GHC场景对早期云下部结构的能量预算的演变提供了现实的描述,这与星形形成活动的演变同时发生。

We compare dense clumps and cores in a numerical simulation of molecular clouds (MCs) undergoing global hierarchical collapse (GHC) to observations in two MCs at different evolutionary stages, the Pipe and the G14.225 clouds, to test the ability of the GHC scenario to follow the early evolution of the energy budget and star formation activity of these structures. In the simulation, we select a region that contains cores of sizes and densities similar to the Pipe cores, and find that it evolves through accretion, developing substructure similar to that of G14.225 cloud after $\sim 1.6$ Myr. Within this region, we follow the evolution of the Larson ratio $\mathcal{L} \equiv σ_{\rm v}/R^{1/2}$, where $σ_{\rm v}$ is the velocity dispersion and $R$ is the size, the virial parameter $α$, and the star formation activity of the cores/clumps. In the simulation, we find that as the region evolves: $i)$ its clumps have $\mathcal{L}$ and $α$ values first consistent with those of the Pipe substructures and later with those of G14.225; $ii)$ the individual cores first exhibit a decrease in $α$ followed by an increase when star formation begins; $iii)$ collectively, the ensemble of cores/clumps reproduces the observed trend of lower $α$ for higher-mass objects, and $iv)$ the star formation rate and star formation efficiency increase monotonically. We suggest that this evolution is due to the simultaneous loss of externally-driven compressive kinetic energy and increase of the self-gravity-driven motions. We conclude that the GHC scenario provides a realistic description of the evolution of the energy budget of the clouds' substructure at early times, which occurs simultaneously with an evolution of the star formation activity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源