论文标题
MOS $ _2 $ ATOMIC-LAYER中的单fectect Memristor
Single-defect Memristor in MoS$_2$ Atomic-layer
论文作者
论文摘要
非易失性电阻开关,在两个终端设备中也称为Memristor效应,已成为正在进行的高密度信息存储,受脑启发的计算和可重新配置系统的开发中最重要的组件之一。最近,由于尺寸缩放的前景和相关的益处,过渡金属二分法夹层结构的原子单层中的Memristor效应意外发现。但是,原子板中开关机制的起源仍然不确定。在这里,使用单层MOS $ _2 $作为模型系统,原子成像和光谱法表明,金属取代为硫空位,导致电阻的非挥发性变化。通过缺陷结构和电子状态的计算研究证实了实验观察结果。这些了不起的发现提供了对非挥发性开关机制的原子理解,并在精确缺陷工程方面打开了新的方向,以至于单个缺陷,以实现最佳性能指标,包括记忆密度,使用原子纳米材料,可靠性,速度和可靠性。
Non-volatile resistive switching, also known as memristor effect in two terminal devices, has emerged as one of the most important components in the ongoing development of high-density information storage, brain-inspired computing, and reconfigurable systems. Recently, the unexpected discovery of memristor effect in atomic monolayers of transitional metal dichalcogenide sandwich structures has added a new dimension of interest owing to the prospects of size scaling and the associated benefits. However, the origin of the switching mechanism in atomic sheets remains uncertain. Here, using monolayer MoS$_2$ as a model system, atomistic imaging and spectroscopy reveal that metal substitution into sulfur vacancy results in a non-volatile change in resistance. The experimental observations are corroborated by computational studies of defect structures and electronic states. These remarkable findings provide an atomistic understanding on the non-volatile switching mechanism and open a new direction in precision defect engineering, down to a single defect, for achieving optimum performance metrics including memory density, switching energy, speed, and reliability using atomic nanomaterials.