论文标题
通过主动学习指导的粗粒分子模拟发现自组装的$π$ - 缀合的肽
Discovery of Self-Assembling $π$-Conjugated Peptides by Active Learning-Directed Coarse-Grained Molecular Simulation
论文作者
论文摘要
电子活跃的有机分子表现出了巨大的希望,作为能量收集和运输的新型软材料。由$π$偶联的寡肽形成的自组装纳米凝集剂由芳香的核心肽组成,侧翼是寡肽翅膀的侧面,提供了水溶性和生物相容性底物中的新兴光电特性。可以通过调整核心化学和肽组成来控制纳米构的特性,但是序列结构函数关系的特征仍然很差。在这项工作中,我们在主动学习方案中采用粗粒细粒的分子动力学模拟,采用深层代表性学习和贝叶斯优化,以有效地识别能够组装伪1D纳米聚集体的分子,并具有良好的电子活性$π$ - 折叠。我们考虑DXXX-OPV3-XXXD寡肽家族,其中D是ASP残基,OPV3是寡苯基乙烯基寡聚物(1,4-二苯乙烯),以识别所有20 $^3 $ = 8,,000个可能的序列中表现最高的XXX三肽。通过直接模拟该空间的2.3%,我们确定相对于先前工作中报道的分子,预计将表现出优越的组装。顶级候选人的光谱聚类揭示了有关组件的新设计规则。这项工作为DXXX-OPV3-XXXD组装建立了新的了解,确定了有希望的实验测试的新候选者,并提出了一个计算设计平台,可以通常扩展到其他基于肽的肽和类似肽的系统。
Electronically-active organic molecules have demonstrated great promise as novel soft materials for energy harvesting and transport. Self-assembled nanoaggregates formed from $π$-conjugated oligopeptides composed of an aromatic core flanked by oligopeptide wings offer emergent optoelectronic properties within a water soluble and biocompatible substrate. Nanoaggregate properties can be controlled by tuning core chemistry and peptide composition, but the sequence-structure-function relations remain poorly characterized. In this work, we employ coarse-grained molecular dynamics simulations within an active learning protocol employing deep representational learning and Bayesian optimization to efficiently identify molecules capable of assembling pseudo-1D nanoaggregates with good stacking of the electronically-active $π$-cores. We consider the DXXX-OPV3-XXXD oligopeptide family, where D is an Asp residue and OPV3 is an oligophenylene vinylene oligomer (1,4-distyrylbenzene), to identify the top performing XXX tripeptides within all 20$^3$ = 8,000 possible sequences. By direct simulation of only 2.3% of this space, we identify molecules predicted to exhibit superior assembly relative to those reported in prior work. Spectral clustering of the top candidates reveals new design rules governing assembly. This work establishes new understanding of DXXX-OPV3-XXXD assembly, identifies promising new candidates for experimental testing, and presents a computational design platform that can be generically extended to other peptide-based and peptide-like systems.