论文标题

用于监视大型物联网网络中准周期流量的机器学习方法

Machine Learning Methods for Monitoring of Quasi-Periodic Traffic in Massive IoT Networks

论文作者

Sørensen, René Brandborg, Nielsen, Jimmy Jessen, Popovski, Petar

论文摘要

大规模物联网(IoT)部署的主要问题之一是监视大量链接的状态。通过链接传输的流​​量的不规则性加剧了问题,因为交通间歇性可以伪装成链接故障,反之亦然。在这项工作中,我们为运行准周期应用程序的物联网设备提供了流量模型,并提出了有监督的和无监督的机器学习方法,用于监视具有准周期性报告的物联网部署的网络性能,例如智能计量,环境监测和农业监测。无监督的方法基于Lomb-Scargle期间图,这是天文学家开发的一种方法,用于估计不均采样时间序列的光谱密度。

One of the central problems in massive Internet of Things (IoT) deployments is the monitoring of the status of a massive number of links. The problem is aggravated by the irregularity of the traffic transmitted over the link, as the traffic intermittency can be disguised as a link failure and vice versa. In this work we present a traffic model for IoT devices running quasi-periodic applications and we present both supervised and unsupervised machine learning methods for monitoring the network performance of IoT deployments with quasi-periodic reporting, such as smart-metering, environmental monitoring and agricultural monitoring. The unsupervised methods are based on the Lomb-Scargle periodogram, an approach developed by astronomers for estimating the spectral density of unevenly sampled time series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源