论文标题
净计量政策下的最佳控制
Storage Optimal Control under Net Metering Policies
论文作者
论文摘要
电价和最终用户净负荷随时间而变化。配备了储能设备的电力消费者可以执行能源套利,即,当能源价格便宜或能源不足时购买,并在昂贵或过剩的情况下出售它,考虑到未来的价格和净负荷的变化。净计量策略表明,许多公用事业都采用{客户销售}的利率低于或等于零售{客户购买利率},以补偿最终用户产生的多余能源。在本文中,我们在净计量的情况下为最终用户存储设备制定了最佳控制问题。我们提出了一种计算有效的算法,在LookAhead Horizon中,在样本数量方面,二次运行时间的复杂性最差,该算法在时间范围内计算最佳能量渐变速率。所提出的算法利用了问题的分段线性结构和凸度属性,用于\ textit {ivevetization}的最佳拉格朗日乘数。该解决方案具有一个\ textIt {基于阈值的结构},其中最佳控制决策独立于过去或将来的价格以及超出特定时间范围的净负载值,定义为\ textit {sub-horizon}。数值结果显示了所提出的模型和算法的有效性。此外,我们研究了预测误差对拟议技术的影响。我们考虑了基于净负载的自动退缩平均值(ARMA)以及模型预测控制(MPC)。我们从数值上表明自适应预测和MPC可以显着减轻预测误差对能量套利增长的影响。
Electricity prices and the end user net load vary with time. Electricity consumers equipped with energy storage devices can perform energy arbitrage, i.e., buy when energy is cheap or when there is a deficit of energy, and sell it when it is expensive or in excess, taking into account future variations in price and net load. Net metering policies indicate that many of the utilities apply a {customer selling} rate lower than or equal to the retail {customer buying rate} in order to compensate excess energy generated by end users. In this paper, we formulate the optimal control problem for an end user energy storage device in presence of net metering. We propose a computationally efficient algorithm, with worst case run time complexity of quadratic in terms of number of samples in lookahead horizon, that computes the optimal energy ramping rates in a time horizon. The proposed algorithm exploits the problem's piecewise linear structure and convexity properties for the \textit{discretization} of optimal Lagrange multipliers. The solution has a \textit{threshold-based structure} in which optimal control decisions are independent of past or future price as well as of net load values beyond a certain time horizon, defined as a \textit{sub-horizon}. Numerical results show the effectiveness of the proposed model and algorithm. Furthermore, we investigate the impact of forecasting errors on the proposed technique. We consider an Auto-Regressive Moving Average (ARMA) based forecasting of net load together with the Model Predictive Control (MPC). We numerically show that adaptive forecasting and MPC significantly mitigate the effects of forecast error on energy arbitrage gains.