论文标题

在相互作用的玻色气的半经典极限中精确的平衡稳态

Exact out-of-equilibrium steady states in the semiclassical limit of the interacting Bose gas

论文作者

Del Vecchio, Giuseppe Del Vecchio, Bastianello, Alvise, De Luca, Andrea, Mussardo, Giuseppe

论文摘要

我们研究了经典的非宗教理论的不平衡性能,最初以有限的能量密度在热力学极限的情况下制备了时间进化。此处考虑的理论是非线性的schrodinger方程,它描述了高职业数字方案中一维相互作用的bose气体的动力学。主要的重点是确定晚期通用Gibbs集合(GGE),该集合可以有效地在任意初始状态下进行半数字计算,从而完全解决了经典制度中著名的淬火问题。我们利用量子模型中的已知结果和半经典限制,以在任意GGES上的密度运算符的动量实现新的精确结果,我们成功地将其与Ab-Initio数值模拟进行了比较。此外,我们确定密度运算符(完整计数统计)的整个概率分布,其确切表达在量子模型中仍然无法触及。

We study the out-of-equilibrium properties of a classical integrable non-relativistic theory, with a time evolution initially prepared with a finite energy density in the thermodynamic limit. The theory considered here is the Non-Linear Schrodinger equation which describes the dynamics of the one-dimensional interacting Bose gas in the regime of high occupation numbers. The main emphasis is on the determination of the late-time Generalised Gibbs Ensemble (GGE), which can be efficiently semi-numerically computed on arbitrary initial states, completely solving the famous quench problem in the classical regime. We take advantage of known results in the quantum model and the semiclassical limit to achieve new exact results for the momenta of the density operator on arbitrary GGEs, which we successfully compare with ab-initio numerical simulations. Furthermore, we determine the whole probability distribution of the density operator (full counting statistics), whose exact expression is still out of reach in the quantum model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源