论文标题

无限端组的自动形态群的酰基轴承双曲线

Acylindrical hyperbolicity of automorphism groups of infinitely-ended groups

论文作者

Genevois, Anthony, Horbez, Camille

论文摘要

我们证明,每个无限限制的有限生成的组的自动形态群都是酰基杂质的。尤其是$ \ mathrm {aut}(\ mathbb {f} _n)$对于每$ n \ ge 2 $来说都是酰基杂质。更一般而言,如果$ g $是一个几乎不是循环的组,并且相对于有限生成的适当子组的有限收集$ \ MATHCAL {p} $双曲线,则$ \ MathRM {aut}(g,\ nathcal {p})$是酰基indrindrindrimpybybybybillicbolic。结果,当且仅当$φ$以$ \ mathrm {out}(out mathbb {f} _n)$时,仅当$ $φ$以$ \ mathrm {out mathrm {out} _n)$。

We prove that the automorphism group of every infinitely-ended finitely generated group is acylindrically hyperbolic. In particular $\mathrm{Aut}(\mathbb{F}_n)$ is acylindrically hyperbolic for every $n\ge 2$. More generally, if $G$ is a group which is not virtually cyclic, and hyperbolic relative to a finite collection $\mathcal{P}$ of finitely generated proper subgroups, then $\mathrm{Aut}(G,\mathcal{P})$ is acylindrically hyperbolic. As a consequence, a free-by-cyclic group $\mathbb{F}_n\rtimes_φ\mathbb{Z}$ is acylindrically hyperbolic if and only if $φ$ has infinite order in $\mathrm{Out}(\mathbb{F}_n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源