论文标题
DSTC8的模式引导的对话状态跟踪任务
Schema-Guided Dialogue State Tracking Task at DSTC8
论文作者
论文摘要
本文概述了第8对话系统技术挑战的架构引导的对话状态跟踪任务。该任务的目的是开发适合大规模虚拟助手的对话状态跟踪模型,重点关注跨域的数据有效的联合建模,而对新API的零弹性概括。此任务提供了一个新的数据集,该数据集由培训设置中的16000多个对话组成,涵盖了16个域,以突出这些挑战,以及一个能够零弹性概括为新API的基线模型。 25个团队参加了会议,开发了一系列神经网络模型,超过了基线模型的性能。这些提交的内容融合了各种预训练的编码器和数据增强技术。本文介绍了任务定义,数据集和评估方法。我们还总结了提交的系统的方法和结果,以突出最新的整体趋势。
This paper gives an overview of the Schema-Guided Dialogue State Tracking task of the 8th Dialogue System Technology Challenge. The goal of this task is to develop dialogue state tracking models suitable for large-scale virtual assistants, with a focus on data-efficient joint modeling across domains and zero-shot generalization to new APIs. This task provided a new dataset consisting of over 16000 dialogues in the training set spanning 16 domains to highlight these challenges, and a baseline model capable of zero-shot generalization to new APIs. Twenty-five teams participated, developing a range of neural network models, exceeding the performance of the baseline model by a very high margin. The submissions incorporated a variety of pre-trained encoders and data augmentation techniques. This paper describes the task definition, dataset and evaluation methodology. We also summarize the approach and results of the submitted systems to highlight the overall trends in the state-of-the-art.