论文标题
n-纯粹的字符图
n-exact Character Graphs
论文作者
论文摘要
令$γ$为有限的简单图。如果对于某些整数$ n \ geqslant 4 $,则$γ$是$ k_n $ - free图,其补充的长度至少为$ 2n-5 $,那么我们说$γ$是$ n $ excexact图。对于有限的$ g $,让$δ(g)$表示构建的字符图,构建在$ g $的不可约合复杂字符的一组。在本文中,我们证明了$ n $ exact cartun Graph的顺序最多为$ 2N-1 $。另外,我们还确定所有有限组$ g $的结构,以及极值$ n $ exact cartar graph $δ(g)$。
Let $Γ$ be a finite simple graph. If for some integer $n\geqslant 4$, $Γ$ is a $K_n$-free graph whose complement has an odd cycle of length at least $2n-5$, then we say that $Γ$ is an $n$-exact graph. For a finite group $G$, let $Δ(G)$ denote the character graph built on the set of degrees of the irreducible complex characters of $G$. In this paper, we prove that the order of an $n$-exact character graph is at most $2n-1$. Also we determine the structure of all finite groups $G$ with extremal $n$-exact character graph $Δ(G)$.