论文标题

degasperis-procesi方程的光滑孤立波的轨道稳定性

Orbital Stability of smooth solitary waves for the Degasperis-Procesi Equation

论文作者

Li, Ji, Liu, Yue, Wu, Qiliang

论文摘要

Degasperis-Procesi方程是可集成的Camassa-Holm型模型,它是浅水波单向传播的渐近近似。这项工作确立了局部平滑孤立波的轨道稳定性,可在真实线上对desgasperis-procesi(DP)方程。 %将我们先前的工作扩展到其光谱稳定性\ cite {llw}。主要难度源于以下事实:DP方程的翻译对称性产生了相当于$ l^2 $ norm的保守数量,该数量本身无法绑定Lagrangian中的高阶非线性项。补救措施是要观察到,鉴于满足可测量约束的足够光滑的初始条件,扰动的$ l^\ infty $轨道标准在上面是其$ l^2 $轨道标准的函数,从而在$ l^2 \ 2 \ cap l^\ infty $空间中产生轨道稳定性。

The Degasperis-Procesi equation is the integrable Camassa-Holm-type model which is an asymptotic approximation for the unidirectional propagation of shallow water waves. This work establishes the orbital stability of localized smooth solitary waves to the Desgasperis-Procesi (DP) equation on the real line. %extending our previous work on their spectral stability \cite{LLW}. The main difficulty stems from the fact that the translation symmetry for the DP equation gives rise to a conserved quantity equivalent to the $L^2$-norm, which by itself can not bound the higher-order nonlinear terms in the Lagrangian. The remedy is to observe that, given a sufficiently smooth initial condition satisfying a measurable constraint, the $L^\infty$ orbital norm of the perturbation is bounded above by a function of its $L^2$ orbital norm, yielding the orbital stability in the $L^2\cap L^\infty$ space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源