论文标题
在$δ$ - 模块化整数线性问题上,以规范形式和等效问题
On $Δ$-Modular Integer Linear Problems In The Canonical Form And Equivalent Problems
论文作者
论文摘要
整数线性编程领域的许多论文(简称ILP)专门用于$ \ max \ {c^\ {c^\ top x \ colon a x = b,\ in \ in \ mathbb {z}^n _ { $ a $和$ \ | a \ | _ {\ max} $。对于某些整数vector $ u $,以标准形式的ILP问题的名称以ILP问题的名义知道了这类问题。最近,对于标准形式的有限和无限的ILP问题,获得了许多新的稀疏性,接近性和复杂性结果。 在本文中,我们考虑了规范形式的ILP问题$ \ max \ {c^\ top x \ colon b_l \ leq a x \ leq b_r,\,x \ in \ in \ mathbb {z}^n \}我们假设整数矩阵$ a $具有等级$ n $,$(n + m)$行,$ n $ columters,并将问题置于$ m $和$δ(a)$,其中$δ(a)是$ n \ times $ n \ times n \ times n $ n $ n $ sub-n $ subsentermant $ a $ a $,以绝对值为绝对值。我们表明,标准形式中的任何ILP问题都可以多项式地减少到规范形式的某些ILP问题,并保留$ m $和$δ(a)$,但并非总是可能的。更确切地说,我们以标准形式定义了广义ILP问题类别,其中包括附加的组约束,并以规范形式证明了与ILP问题的等效性。 我们概括了规范形式中ILP问题的已知稀疏性,接近性和复杂性界限。此外,有时,我们以规范形式的ILP问题加强了以前已知的结果,有时我们给出了更短的证明。最后,我们考虑\ {0,1 \} $的$ m \的特殊情况。通过这种方式,我们为简单,背包问题和子集问题问题的问题提供了专门的稀疏性,接近性和复杂性界限。
Many papers in the field of integer linear programming (ILP, for short) are devoted to problems of the type $\max\{c^\top x \colon A x = b,\, x \in \mathbb{Z}^n_{\geq 0}\}$, where all the entries of $A,b,c$ are integer, parameterized by the number of rows of $A$ and $\|A\|_{\max}$. This class of problems is known under the name of ILP problems in the standard form, adding the word "bounded" if $x \leq u$, for some integer vector $u$. Recently, many new sparsity, proximity, and complexity results were obtained for bounded and unbounded ILP problems in the standard form. In this paper, we consider ILP problems in the canonical form $$\max\{c^\top x \colon b_l \leq A x \leq b_r,\, x \in \mathbb{Z}^n\},$$ where $b_l$ and $b_r$ are integer vectors. We assume that the integer matrix $A$ has the rank $n$, $(n + m)$ rows, $n$ columns, and parameterize the problem by $m$ and $Δ(A)$, where $Δ(A)$ is the maximum of $n \times n$ sub-determinants of $A$, taken in the absolute value. We show that any ILP problem in the standard form can be polynomially reduced to some ILP problem in the canonical form, preserving $m$ and $Δ(A)$, but the reverse reduction is not always possible. More precisely, we define the class of generalized ILP problems in the standard form, which includes an additional group constraint, and prove the equivalence to ILP problems in the canonical form. We generalize known sparsity, proximity, and complexity bounds for ILP problems in the canonical form. Additionally, sometimes, we strengthen previously known results for ILP problems in the canonical form, and, sometimes, we give shorter proofs. Finally, we consider the special cases of $m \in \{0,1\}$. By this way, we give specialised sparsity, proximity, and complexity bounds for the problems on simplices, Knapsack problems and Subset-Sum problems.