论文标题

使用卷积神经网络确定相互作用的星系的相对倾向和视角

Determination of the relative inclination and the viewing angle of an interacting pair of galaxies using convolutional neural networks

论文作者

Prakash, Prem, Banerjee, Arunima, Perepu, Pavan Kumar

论文摘要

构建动态模型,用于相互作用的星系对,受其观察到的结构和运动学的约束,至关重要地取决于正确选择相对倾斜的值($ i $)之间的银河平面以及视角($θ$),即视线和视线之间的角度和轨道运动平面之间的角度。我们使用N-Body $+$平滑的粒子流体动力学(SPH)仿真数据来确定相互作用的星系对的相对倾向($ i $)和视角($θ$)的相对倾向($ i $)和观看角度($θ$),从Galmer数据库进行训练。为了仅根据其$ i $值对星系对进行分类,我们首先构建了(a)2级($ i $ = 0 $ = 0 $ = 0 $^{\ circ} $,45 $^{\ circ} $)和(b)3级($ i = 0^{\ circ},45^{\ cirp} $ cirp} $ cool {分类,分别获得99%和98%的$ F_1 $分数。此外,对于基于$ i $和$θ$值的分类,我们为9级分类($(i,θ)\ sim(0^{\ circ},15^{\ circ}))开发DCNN模型(45^{\ circ},15^{\ circ}),(45^{\ circ},45^{\ circ}),(45^{\ circ},90^{\ circ}),(90^{\ circ},15^{\ circ},circ} {\ circ} {\ 90}} (90^{\ circ},90^{\ circ})$),$ f_1 $得分为97 $ \%$。最后,我们在斯隆数字天空调查(SDSS)DR15的相互作用星系对的真实数据上测试了我们的2级模型,并获得了78%的$ F_1 $得分。我们的DCNN模型可以进一步扩展,以确定建模相互作用星系对的动态所需的其他参数,这是当前通过反复试验完成的。

Constructing dynamical models for interacting pair of galaxies as constrained by their observed structure and kinematics crucially depends on the correct choice of the values of the relative inclination ($i$) between their galactic planes as well as the viewing angle ($θ$), the angle between the line of sight and the normal to the plane of their orbital motion. We construct Deep Convolutional Neural Network (DCNN) models to determine the relative inclination ($i$) and the viewing angle ($θ$) of interacting galaxy pairs, using N-body $+$ Smoothed Particle Hydrodynamics (SPH) simulation data from the GALMER database for training the same. In order to classify galaxy pairs based on their $i$ values only, we first construct DCNN models for a (a) 2-class ( $i$ = 0 $^{\circ}$, 45$^{\circ}$ ) and (b) 3-class ($i = 0^{\circ}, 45^{\circ} \text{ and } 90^{\circ}$) classification, obtaining $F_1$ scores of 99% and 98% respectively. Further, for a classification based on both $i$ and $θ$ values, we develop a DCNN model for a 9-class classification ($(i,θ) \sim (0^{\circ},15^{\circ}) ,(0^{\circ},45^{\circ}), (0^{\circ},90^{\circ}), (45^{\circ},15^{\circ}), (45^{\circ}, 45^{\circ}), (45^{\circ}, 90^{\circ}), (90^{\circ}, 15^{\circ}), (90^{\circ}, 45^{\circ}), (90^{\circ},90^{\circ})$), and the $F_1$ score was 97$\%$. Finally, we tested our 2-class model on real data of interacting galaxy pairs from the Sloan Digital Sky Survey (SDSS) DR15, and achieve an $F_1$ score of 78%. Our DCNN models could be further extended to determine additional parameters needed to model dynamics of interacting galaxy pairs, which is currently accomplished by trial and error method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源