论文标题

使用耦合的CNN对高光谱和激光元数据进行分类

Classification of Hyperspectral and LiDAR Data Using Coupled CNNs

论文作者

Hang, Renlong, Li, Zhu, Ghamisi, Pedram, Hong, Danfeng, Xia, Guiyu, Liu, Qingshan

论文摘要

在本文中,我们提出了一个有效有效的框架,以使用两个耦合卷积神经网络(CNN)融合高光谱和光(LIDAR)数据(LIDAR)数据。一个CNN旨在从高光谱数据中学习光谱空间特征,另一个CNN用于从LiDAR数据中捕获高程信息。它们俩由三个卷积层组成,最后两个卷积层通过参数共享策略耦合在一起。在融合阶段,特征级别和决策级融合方法同时用于充分整合这些异质特征。对于特征级融合,评估了三种不同的融合策略,包括串联策略,最大化策略和求和策略。对于决策级融合,采用加权求和策略,其中权重由每个输出的分类精度确定。对在美国休斯顿收购的城市数据集和意大利特伦托捕获的农村数据集进行了评估。在休斯顿的数据上,我们的模型可以达到96.03%的新记录总体准确性。在Trento数据上,它的总体准确性为99.12%。这些结果充分证明了我们提出的模型的有效性。

In this paper, we propose an efficient and effective framework to fuse hyperspectral and Light Detection And Ranging (LiDAR) data using two coupled convolutional neural networks (CNNs). One CNN is designed to learn spectral-spatial features from hyperspectral data, and the other one is used to capture the elevation information from LiDAR data. Both of them consist of three convolutional layers, and the last two convolutional layers are coupled together via a parameter sharing strategy. In the fusion phase, feature-level and decision-level fusion methods are simultaneously used to integrate these heterogeneous features sufficiently. For the feature-level fusion, three different fusion strategies are evaluated, including the concatenation strategy, the maximization strategy, and the summation strategy. For the decision-level fusion, a weighted summation strategy is adopted, where the weights are determined by the classification accuracy of each output. The proposed model is evaluated on an urban data set acquired over Houston, USA, and a rural one captured over Trento, Italy. On the Houston data, our model can achieve a new record overall accuracy of 96.03%. On the Trento data, it achieves an overall accuracy of 99.12%. These results sufficiently certify the effectiveness of our proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源