论文标题
在视频中进行异常活动检测的3D重新连接和排名损失函数
3D ResNet with Ranking Loss Function for Abnormal Activity Detection in Videos
论文作者
论文摘要
异常活动检测是计算机视觉领域中最具挑战性的任务之一。这项研究是由最新的异常活动检测的最新工作激发的,该研究利用异常和正常视频在学习异常中,通过多次实例学习,通过为数据提供视频级别的信息来学习异常。在没有时间通量的情况下,这种模型很容易发出错误警报,同时检测到异常。因此,在本文中,我们专注于在执行异常活动检测任务时最小化错误警报率的任务。在视频识别任务中,这些虚假警报的缓解和3D深神经网络的最新进展共同使我们有动力利用我们提出的方法利用3D重新连接,这有助于从视频中提取时空特征。之后,使用这些功能和深层实例学习以及提出的排名损失,我们的模型学会了预测视频段级别的异常得分。因此,与其他最先进的方法相比,我们提出的方法3D深度实例学习以及新提出的排名损失函数在UCF-Crime基准数据集上实现了最佳性能。在UCF-Crime数据集上证明了我们提出的方法的有效性。
Abnormal activity detection is one of the most challenging tasks in the field of computer vision. This study is motivated by the recent state-of-art work of abnormal activity detection, which utilizes both abnormal and normal videos in learning abnormalities with the help of multiple instance learning by providing the data with video-level information. In the absence of temporal-annotations, such a model is prone to give a false alarm while detecting the abnormalities. For this reason, in this paper, we focus on the task of minimizing the false alarm rate while performing an abnormal activity detection task. The mitigation of these false alarms and recent advancement of 3D deep neural network in video action recognition task collectively give us motivation to exploit the 3D ResNet in our proposed method, which helps to extract spatial-temporal features from the videos. Afterwards, using these features and deep multiple instance learning along with the proposed ranking loss, our model learns to predict the abnormality score at the video segment level. Therefore, our proposed method 3D deep Multiple Instance Learning with ResNet (MILR) along with the new proposed ranking loss function achieves the best performance on the UCF-Crime benchmark dataset, as compared to other state-of-art methods. The effectiveness of our proposed method is demonstrated on the UCF-Crime dataset.