论文标题

从最终不同的功能到大流行的数量

From eventually different functions to pandemic numberings

论文作者

Beros, Achilles A., Khan, Mushfeq, Kjos-Hanssen, Bjørn, Nies, André

论文摘要

如果函数最终与每个递归函数不同,则具有强烈的非收集性(SNR)。我们获得了与以不同生长界限计算此类功能相关的质量问题的层次结构结果。特别是,在snr $ _f $的表单中,没有最不重要的,也没有最大的muchnik学位,这些snr $ _f $由snr函数组成,这些函数由不同的递归范围$ f $界定。 我们表明,从某种意义上说,SNR函数与规范免疫集之间的连接与DNR(对角线非收集性)功能和有效免疫集合之间的连接一样牢固。最后,我们介绍了大流行编号,这是一种固定的理论双重对免疫力。

A function is strongly non-recursive (SNR) if it is eventually different from each recursive function. We obtain hierarchy results for the mass problems associated with computing such functions with varying growth bounds. In particular, there is no least and no greatest Muchnik degree among those of the form SNR$_f$ consisting of SNR functions bounded by varying recursive bounds $f$. We show that the connection between SNR functions and canonically immune sets is, in a sense, as strong as that between DNR (diagonally non-recursive) functions and effectively immune sets. Finally, we introduce pandemic numberings, a set-theoretic dual to immunity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源