论文标题

量化假设空间在从人类机器人演示和身体校正中学习时指定错误

Quantifying Hypothesis Space Misspecification in Learning from Human-Robot Demonstrations and Physical Corrections

论文作者

Bobu, Andreea, Bajcsy, Andrea, Fisac, Jaime F., Deglurkar, Sampada, Dragan, Anca D.

论文摘要

人类输入使自主系统能够提高其功能并实现复杂的行为,而这些行为原本是自动生成的具有挑战性的。最近的工作着重于机器人如何使用此类输入(例如演示或校正)来学习预期的目标。这些技术假设人类的期望目标已经存在于机器人的假设空间内。实际上,这个假设通常是不准确的:总会在某些情况下,该人可能会关心机器人不知道的任务的各个方面。没有这些知识,机器人将无法推断正确的目标。因此,当机器人的假设空间被弄清楚时,甚至可以跟踪目标失败不确定性的方法,因为他们认为哪种假设可能是正确的,而不是任何假设是否正确。在本文中,我们认为机器人应该明确地说明它如何解释人类的投入,因为它的假设空间并利用了情境信心来告知其应如何纳入人类的投入。我们在从两种重要类型的人类输入中学习的7度机器人操作器上演示了我们的方法:在机器人任务执行过程中进行操作任务和身体校正的演示。

Human input has enabled autonomous systems to improve their capabilities and achieve complex behaviors that are otherwise challenging to generate automatically. Recent work focuses on how robots can use such input - like demonstrations or corrections - to learn intended objectives. These techniques assume that the human's desired objective already exists within the robot's hypothesis space. In reality, this assumption is often inaccurate: there will always be situations where the person might care about aspects of the task that the robot does not know about. Without this knowledge, the robot cannot infer the correct objective. Hence, when the robot's hypothesis space is misspecified, even methods that keep track of uncertainty over the objective fail because they reason about which hypothesis might be correct, and not whether any of the hypotheses are correct. In this paper, we posit that the robot should reason explicitly about how well it can explain human inputs given its hypothesis space and use that situational confidence to inform how it should incorporate human input. We demonstrate our method on a 7 degree-of-freedom robot manipulator in learning from two important types of human input: demonstrations of manipulation tasks, and physical corrections during the robot's task execution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源