论文标题
通过星际空间的相对论太阳能质子的3D传播
3D propagation of relativistic solar protons through interplanetary space
论文作者
论文摘要
语境。具有GEV范围内能量的太阳能颗粒(SEP)可以从太阳附近的加速区域传播到地球,并产生地面水平增强(GLES)。解释和建模GLE观测的传统方法假设粒子的传播仅平行于行星际空间的磁场线,即在空间上是1D。 Pamela的最新测量表征了在1 AU处的SEP特性,在高光谱分辨率下的〜100 MEV-1 GEV范围。目标。我们使用3D方法对GLE-能量太阳能质子(IMF)的运输进行建模,以评估地球电流板(HCS)的效果以及与Parker Spiral的梯度和曲率相关的漂移。后者受到IMF极性的影响。我们得出1个AU可观察结果,并将仿真结果与来自Pamela的数据进行比较。方法。我们使用包括HCS在内的3D测试粒子模型。首先研究单核种群,以获取1 Au球体的传播模式和交叉数的定性图片。电力定律注射的模拟用于在1 AU处得出强度曲线和通量光谱。针对特定事件GLE 71的模拟用于与Pamela数据进行比较。结果。 1个AU交叉口和平均交叉数的空间模式受到3D效应的强烈影响,A+和A极性周期之间存在显着差异。 1 AU强度曲线的衰减时间常数取决于观察者的极性和位置,它不是平均自由路径的简单函数,而是1D模型中的简单函数。在许多情况下,从注射通量管中的能量依赖性泄漏对于GLE能量颗粒尤其重要,导致在通风频谱中滚动。
Context. Solar Energetic Particles (SEPs) with energy in the GeV range can propagate to Earth from their acceleration region near the Sun and produce Ground Level Enhancements (GLEs). The traditional approach to interpreting and modelling GLE observations assumes particle propagation only parallel to the magnetic field lines of interplanetary space, i.e. it is spatially 1D. Recent measurements by PAMELA have characterised SEP properties at 1 AU for the ~100 MeV-1 GeV range at high spectral resolution. Aims. We model the transport of GLE-energy solar protons through the Interplanetary Magnetic Field (IMF) using a 3D approach, to assess the effect of the Heliospheric Current Sheet (HCS) and drifts associated to the gradient and curvature of the Parker spiral. The latter are influenced by the IMF polarity. We derive 1 AU observables and compare the simulation results with data from PAMELA. Methods. We use a 3D test particle model including a HCS. Monoenergetic populations are studied first to obtain a qualitative picture of propagation patterns and numbers of crossings of the 1 AU sphere. Simulations for power law injection are used to derive intensity profiles and fluence spectra at 1 AU. A simulation for a specific event, GLE 71, is used to compare with PAMELA data. Results. Spatial patterns of 1 AU crossings and the average number of crossings are strongly influenced by 3D effects, with significant differences between periods of A+ and A- polarities. The decay time constant of 1 AU intensity profiles varies depending on the polarity and position of the observer, and it is not a simple function of the mean free path as in 1D models. Energy dependent leakage from the injection flux tube is particularly important for GLE energy particles, in many cases resulting in a roll-over in the fluence spectrum.