论文标题
V4334 SGR(Sakurai的对象)周围的灰尘和分子的红外视图:20年的回顾展
The infrared view of dust and molecules around V4334 Sgr (Sakurai's Object): a 20-year retrospective
论文作者
论文摘要
我们介绍了在$ \ sim20 $年度期间,在非常晚的热脉冲对象V4334 SGR(Sakurai's物体)环境中,分析偶性粉尘和分子的演变,并在地面,机载和空间基和空间的红外光度计和光谱仪上绘制。尘埃排放始于1997年,类似于一个黑体,该黑体从1998年8月的$ \ sim1200 $ k冷却到2016年7月的$ \ sim180 $ k。假设尘埃质量是$ \ sim5 \ sim5 \ times10^{ - 10} $ m $ $ _ \ odot $在1998年8月,我们估计总尘埃质量为$ \ sim2 \ sim2 \ times10^{ - 5} $ _ \ m $ _ \ odot $ \ odot $ by $ \ sim2016 $。 2008年,近红外过量的出现表明(或更新)质量损失的新事件开始了。我们推断出嵌入式恒星的降低光度的下限,从灰尘壳中升至$ \ sim16000 $ l $ _ \ odot $,然后再降至$ \ sim3000 $ l $ _ \ odot $。有证据表明,弱6-7 $ $ m的吸收,我们将其归因于在1997年事件之前的质量弹出阶段,在樱雷物体弹出的材料中形成的氢化无定形碳。我们检测到光谱中的小碳氢化合物和其他分子,并追踪氰化氢(HCN)和乙炔(c $ _2 $ _2 $ h $ _2 $)中的色谱柱密度。我们使用前者来确定$^{12} $ c/$^{13} $ c比率为$ 6.4 \ pm0.7 $,比太阳能系统值小14倍。
We present an analysis of the evolution of circumstellar dust and molecules in the environment of the very late thermal pulse object V4334 Sgr (Sakurai's Object) over a $\sim20$-year period, drawing on ground-, airborne- and space-based infrared photometry and spectroscopy. The dust emission, which started in 1997, resembles a blackbody that cooled from $\sim1200$K in 1998 August to $\sim180$K in 2016 July. The dust mass, assuming amorphous carbon, was $\sim5\times10^{-10}$M$_\odot$ in 1998 August, and we estimate that the total dust mass was $\sim2\times10^{-5}$M$_\odot$ by $\sim2016$. The appearance of a near infrared excess in 2008 suggests a new episode of (or renewed) mass loss began then. We infer lower limits on the bolometric luminosity of the embedded star from that of the dust shell, which rose to $\sim16000$L$_\odot$ before declining to $\sim3000$L$_\odot$. There is evidence for weak 6-7$μ$m absorption, which we attribute to hydrogenated amorphous carbon formed in material ejected by Sakurai's Object during a mass ejection phase that preceded the 1997 event. We detect small hydrocarbon and other molecules in the spectra, and trace the column densities in hydrogen cyanide (HCN) and acetylene (C$_2$H$_2$). We use the former to determine the $^{12}$C/$^{13}$C ratio to be $6.4\pm0.7$, 14 times smaller than the Solar System value.