论文标题
部分可观测时空混沌系统的无模型预测
Laurent series of holomorphic functions smooth up to the boundary
论文作者
论文摘要
结果表明,全体形函数的Laurent系列平滑至$ \ Mathbb {C}^n $中的Reinhardt域上的边界,无条件地收敛到功能空间的Fréchet拓扑中的功能,从而使功能平稳地平稳到边界。
It is shown that the Laurent series of a holomorphic function smooth up to the boundary on a Reinhardt domain in $\mathbb{C}^n$ converges unconditionally to the function in the Fréchet topology of the space of functions smooth up to the boundary.