论文标题
使用平滑颗粒流体动力学的冲浪区域波动力学的数值模拟
Numerical simulations of surf zone wave dynamics using Smoothed Particle Hydrodynamics
论文作者
论文摘要
在这项研究中,我们研究了无网格,拉格朗日颗粒方法(平滑粒子流体动力学,SPH)的能力,以模拟由冲浪区内溢出和崩溃的断裂波产生的详细流体动力学过程。使用弱压缩的SPH代码双层物理学用于模拟两个不同的测深轮廓(平面海滩和边缘礁)上的波浪破裂,并将其与波浪,流和平均水位的实验水槽测量进行比较。尽管模拟跨越了截然不同的波浪破裂条件(包括在有效干燥的礁石斜坡上暴力下波的极端情况),但该模型还是能够使用固定的数值参数来重现各种相关的冲浪区流体动力学过程。这包括对波形非线性演化的准确预测(例如,不对称性和偏度特性),冲浪区内波浪耗散速率以及波设置分布。通过使用这种无网格方法,该模型能够在断裂波内解析临界峰值区域,从而提供了对负责该物业的冲浪区域内波诱导的质量通量的强大预测。在此破裂的波峰区域内,模型结果捕获了有组织波运动的势能最初转换为动能,然后消散,这重现了负责在整个冲浪区域中的波浪设置生成的波力的分布。总体而言,结果揭示了如何使用可比技能与最先进的网格计算流体动力学(CFD)模型准确地重现详细的波浪破坏过程,从而可以应用于对冲浪区动力学的有价值的新物理洞察力。
In this study we investigated the capabilities of the mesh-free, Lagrangian particle method (Smoothed Particle Hydrodynamics, SPH) to simulate the detailed hydrodynamic processes generated by both spilling and plunging breaking waves within the surf zone. The weakly-compressible SPH code DualSPHysics was applied to simulate wave breaking over two distinct bathymetric profiles (a plane beach and fringing reef) and compared to experimental flume measurements of waves, flows, and mean water levels. Despite the simulations spanning very different wave breaking conditions (including an extreme case with violently plunging waves on an effectively dry reef slope), the model was able to reproduce a wide range of relevant surf zone hydrodynamic processes using a fixed set of numerical parameters. This included accurate predictions of the nonlinear evolution of wave shapes (e.g., asymmetry and skewness properties), rates of wave dissipation within the surf zone, and wave setup distributions. By using this mesh-free approach, the model was able to resolve the critical crest region within the breaking waves, which provided robust predictions of the wave-induced mass fluxes within the surf zone responsible for the undertow. Within this breaking crest region, the model results capture how the potential energy of the organized wave motion is initially converted to kinetic energy and then dissipated, which reproduces the distribution of wave forces responsible for wave setup generation across the surf zone. Overall, the results reveal how the mesh-free SPH approach can accurately reproduce the detailed wave breaking processes with comparable skill to state-of-the-art mesh-based Computational Fluid Dynamics (CFD) models, and thus can be applied to provide valuable new physical insight into surf zone dynamics.