论文标题

数据驱动的因素图,用于深符号检测

Data-Driven Factor Graphs for Deep Symbol Detection

论文作者

Shlezinger, Nir, Farsad, Nariman, Eldar, Yonina C., Goldsmith, Andrea J.

论文摘要

从BCJR算法到卡尔曼滤波器的信号处理和通信中的许多重要方案是因子图方法的实例。该算法家族基于基于图形模型进行的基于递归消息传递的计算,代表了基础统计数据的分解。因此,为了实施这些算法,必须对所考虑信号的统计模型具有准确的了解。在这项工作中,我们建议以数据驱动的方式实现因子图方法。特别是,我们建议使用机器学习(ML)工具来学习因子图,而不是整体系统任务,而整个系统任务又通过消息传递到学习图来推断。我们采用建议的方法来学习代表有限内存通道的因子图,这表明了以数据驱动方式实现BCJR检测的能力。我们证明,所提出的系统(称为BCJRNET)学会了从小型培训集中实施BCJR算法,并且与在相同不确定的不确定水平下运行的常规基于基于渠道模型的接收器相比,所得的接收器对不准确的训练的鲁棒性提高了不准确的培训。我们的结果表明,通过利用ML工具从标记的数据中学习因子图,可以实现广泛的基于模型的算法,这些算法传统上需要以数据驱动的方式了解基础统计信息。

Many important schemes in signal processing and communications, ranging from the BCJR algorithm to the Kalman filter, are instances of factor graph methods. This family of algorithms is based on recursive message passing-based computations carried out over graphical models, representing a factorization of the underlying statistics. Consequently, in order to implement these algorithms, one must have accurate knowledge of the statistical model of the considered signals. In this work we propose to implement factor graph methods in a data-driven manner. In particular, we propose to use machine learning (ML) tools to learn the factor graph, instead of the overall system task, which in turn is used for inference by message passing over the learned graph. We apply the proposed approach to learn the factor graph representing a finite-memory channel, demonstrating the resulting ability to implement BCJR detection in a data-driven fashion. We demonstrate that the proposed system, referred to as BCJRNet, learns to implement the BCJR algorithm from a small training set, and that the resulting receiver exhibits improved robustness to inaccurate training compared to the conventional channel-model-based receiver operating under the same level of uncertainty. Our results indicate that by utilizing ML tools to learn factor graphs from labeled data, one can implement a broad range of model-based algorithms, which traditionally require full knowledge of the underlying statistics, in a data-driven fashion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源