论文标题

用石墨烯加热器建模非易失性相位变化纳米光结构的电气切换

Modeling Electrical Switching of Nonvolatile Phase-Change Integrated Nanophotonic Structures with Graphene Heaters

论文作者

Zheng, Jiajiu, Zhu, Shifeng, Xu, Peipeng, Dunham, Scott, Majumdar, Arka

论文摘要

综合纳米光子学的进展已使芯片上通用电子光谱系统的大规模可编程光子集成电路(PIC)。依靠弱,挥发性的热形或电形效应,这种系统通常具有有限的重构性以及高能量消耗和较大的足迹。这些挑战可以通过诉诸于Chalcogenide相位变化材料(PCM),例如GE2SB2TE5(GST),这些材料(GST)在相变时以自负方式提供了实质性的光学对比度。但是,由于光学或电气自热驱动方法的可扩展性差,当前基于PCM的集成光子应用仅限于单个设备或简单的图片。相反,通过外部电加热器加热热导型可以进行大规模整合和大面积开关,但是尚未显示快速和节能的电气控制。在这里,我们基于可编程的GST-on-Silicon平台对GST包装的集成纳米光结构的电气开关进行建模。得益于石墨烯的超低热容量和高平面导热率,提出的结构表现出〜80 MHz的高开关速度,高能效率为19.2 AJ/NM^3(6.6 AJ/NM^3)(6.6 aj/nm^3),以实现完整的相位过渡,以确保实现完整的相位过渡,以确保实现强度的(6.46 db/〜6.46 db)(〜〜46 db/〜6.46 db)在1550 nm)调制。与二锡氧化物和硅P-I-N加热器相比,带有石墨烯加热器的结构显示出两个数量级的较高数量级,用于加热和整体性能。我们的工作促进了对图片的热能加热相变的分析和理解,并支持未来大规模PCM基于PCM的电子光系统系统的开发。

Progress in integrated nanophotonics has enabled large-scale programmable photonic integrated circuits (PICs) for general-purpose electronic-photonic systems on a chip. Relying on the weak, volatile thermo-optic or electro-optic effects, such systems usually exhibit limited reconfigurability along with high energy consumption and large footprints. These challenges can be addressed by resorting to chalcogenide phase-change materials (PCMs) such as Ge2Sb2Te5 (GST) that provide substantial optical contrast in a self-holding fashion upon phase transitions. However, current PCM-based integrated photonic applications are limited to single devices or simple PICs due to the poor scalability of the optical or electrical self-heating actuation approaches. Thermal-conduction heating via external electrical heaters, instead, allows large-scale integration and large-area switching, but fast and energy-efficient electrical control is yet to show. Here, we model electrical switching of GST-clad integrated nanophotonic structures with graphene heaters based on the programmable GST-on-silicon platform. Thanks to the ultra-low heat capacity and high in-plane thermal conductivity of graphene, the proposed structures exhibit a high switching speed of ~80 MHz and high energy efficiency of 19.2 aJ/nm^3 (6.6 aJ/nm^3) for crystallization (amorphization) while achieving complete phase transitions to ensure strong attenuation (~6.46 dB/micron) and optical phase (~0.28 dB/micron at 1550 nm) modulation. Compared with indium tin oxide and silicon p-i-n heaters, the structures with graphene heaters display two orders of magnitude higher figure of merits for heating and overall performance. Our work facilitates the analysis and understanding of the thermal-conduction heating-enabled phase transitions on PICs and supports the development of the future large-scale PCM-based electronic-photonic systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源