论文标题

在语义细分中建模为增量学习的背景

Modeling the Background for Incremental Learning in Semantic Segmentation

论文作者

Cermelli, Fabio, Mancini, Massimiliano, Bulò, Samuel Rota, Ricci, Elisa, Caputo, Barbara

论文摘要

尽管它们在各种任务中有效,但深层建筑仍受一些重要的局限性。特别是,它们容易受到灾难性遗忘的攻击,即,在需要更新模型的情况下,它们的表现不佳,因为可以使用新的课程,但原始培训集并未保留。本文在语义分割的背景下解决了这个问题。当前的策略在此任务上失败了,因为它们不考虑语义细分的特殊方面:因为每个训练步骤仅提供注释仅针对所有可能的类的子集,所以背景类的像素(即不属于其他类别的像素)都会显示出语义分布的转移。在这项工作中,我们重新审视经典的增量学习方法,提出了一种新的基于蒸馏的框架,该框架明确说明了这一转变。此外,我们引入了一种新颖的策略来初始化分类器的参数,从而防止了对背景类别的有偏见的预测。我们通过对Pascal-VOC 2012和ADE20K数据集进行广泛评估来证明我们的方法的有效性,这表现出色的状态超过了艺术的增量学习方法。

Despite their effectiveness in a wide range of tasks, deep architectures suffer from some important limitations. In particular, they are vulnerable to catastrophic forgetting, i.e. they perform poorly when they are required to update their model as new classes are available but the original training set is not retained. This paper addresses this problem in the context of semantic segmentation. Current strategies fail on this task because they do not consider a peculiar aspect of semantic segmentation: since each training step provides annotation only for a subset of all possible classes, pixels of the background class (i.e. pixels that do not belong to any other classes) exhibit a semantic distribution shift. In this work we revisit classical incremental learning methods, proposing a new distillation-based framework which explicitly accounts for this shift. Furthermore, we introduce a novel strategy to initialize classifier's parameters, thus preventing biased predictions toward the background class. We demonstrate the effectiveness of our approach with an extensive evaluation on the Pascal-VOC 2012 and ADE20K datasets, significantly outperforming state of the art incremental learning methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源