论文标题
基于PRMNO3的无选择器RRAM中挥发性电流射击的温度依赖性
Temperature Dependence of Volatile Current shoot-up in PrMnO3 based Selector-less RRAM
论文作者
论文摘要
最近已经考虑了基于PRMNO3(PMO)的电阻随机访问存储器(RRAM),用于无需选择的RRAM和神经形态计算应用程序,通过利用其当前的拍摄。 PMO设备中的当前射击归因于设备中的热失控。因此,对于使用负差分电阻(NDR)的各种应用,对环境温度依赖对当前射击的依赖的理解至关重要。在本文中,我们表征了DC IV的环境热依赖性,并伴随着分析建模的发展。首先,实验显示了依赖温度的电流电压特性和PMO设备阈值电压的变化。其次,开发了基于焦耳加热的热反馈模型,并通过太空电荷有限电流(SCLC)进行了运输,以解释实验观察到的NDR区域。最后,该模型成功预测了一系列实验环境温度的设备行为。作为TCAD的替代方案,这种紧凑而准确的DC模型设置了一个平台,以对内存和神经形态应用的设备和系统级模拟进行理解,设计。
PrMnO3 (PMO) based Resistance Random Access Memory (RRAM) has recently been considered for selector-less RRAM and neuromorphic computing applications by utilizing its current shoot-up. This current shoot-up in the PMO device is attributed to the thermal runaway in the device. Hence, the understanding of the ambient temperature dependence on the current shoot-up of the PMO device is essential for the various applications that utilize the negative differential resistance (NDR). In this paper, we characterize the ambient thermal dependence of dc IV, accompanied by the development of analytical modeling. First, the temperature-dependent current-voltage characteristic and shift in the threshold voltage of the PMO device are shown experimentally. Second, a Joule heating based thermal feedback model coupled with current transport by space charge limited current (SCLC) is developed to explain the experimentally observed NDR region. Finally, the model successfully predicts device behavior over a range of experimental ambient temperatures. As an alternative to TCAD, such a compact and accurate dc model sets up a platform to enable understanding, design with device and systems-level simulations of memory and neuromorphic applications.