论文标题
对不相等函数数量的下限
A lower bound on the number of inequivalent APN functions
论文作者
论文摘要
在本文中,我们以$ 2^{2M} $元素在有限字段上的不等性APN函数的总数建立了一个下限,其中$ m $均为。我们通过证明Pott引入的APN函数和第二个作者(取决于三个参数$ k $,$ s $和$α$)获得了这一结果,对于参数$ k $和$ s $的不同选择而言是成对的不等式的。此外,我们确定这些APN函数的自动形态组。
In this paper, we establish a lower bound on the total number of inequivalent APN functions on the finite field with $2^{2m}$ elements, where $m$ is even. We obtain this result by proving that the APN functions introduced by Pott and the second author, that depend on three parameters $k$, $s$ and $α$, are pairwise inequivalent for distinct choices of the parameters $k$ and $s$. Moreover, we determine the automorphism group of these APN functions.