论文标题

通过反向编码树进化的神经网络

Evolving Neural Networks through a Reverse Encoding Tree

论文作者

Zhang, Haoling, Yang, Chao-Han Huck, Zenil, Hector, Kiani, Narsis A., Shen, Yue, Tegner, Jesper N.

论文摘要

神经进化是设计新颖的神经网络,用于在特定任务(例如逻辑电路设计和数字游戏)中使用的最具竞争力的进化学习框架之一。但是,就其计算成本和搜索时间效率低下而言,基准方法的应用,例如增强拓扑的神经进化(整洁)仍然是一个挑战。本文推进了一种结合了一种拓扑边缘编码的方法,称为反向编码树(RET),以有效地发展可伸缩的神经网络。使用RET,已设计了两种类型的方法 - 与二进制搜索编码(BI-NEAT)和整齐的黄金搜索编码(GS-NEAT) - 旨在解决基准连续学习环境中的问题,例如逻辑盖茨,Cartpole和Lunar Lander,并针对经典的Neat和FS Neat和FS Neateat-Neat-Neatheat as Baselelines进行了测试。此外,我们进行了鲁棒性测试,以评估所提出的纯算法的弹性。结果表明,这两种拟议的策略提供了改进的性能,其特征是(1)在有限的时间步骤中获得更高的累积奖励; (2)使用较少的发作来解决目标环境中的问题,(3)在嘈杂的扰动下保持自适应鲁棒性,在所有测试情况下,基准的表现都优于基准。我们的分析还表明,RET在动态环境中消耗了潜在的未来研究方向。代码可从https://github.com/haolingzhang/reverseencodingtree获得。

NeuroEvolution is one of the most competitive evolutionary learning frameworks for designing novel neural networks for use in specific tasks, such as logic circuit design and digital gaming. However, the application of benchmark methods such as the NeuroEvolution of Augmenting Topologies (NEAT) remains a challenge, in terms of their computational cost and search time inefficiency. This paper advances a method which incorporates a type of topological edge coding, named Reverse Encoding Tree (RET), for evolving scalable neural networks efficiently. Using RET, two types of approaches -- NEAT with Binary search encoding (Bi-NEAT) and NEAT with Golden-Section search encoding (GS-NEAT) -- have been designed to solve problems in benchmark continuous learning environments such as logic gates, Cartpole, and Lunar Lander, and tested against classical NEAT and FS-NEAT as baselines. Additionally, we conduct a robustness test to evaluate the resilience of the proposed NEAT algorithms. The results show that the two proposed strategies deliver improved performance, characterized by (1) a higher accumulated reward within a finite number of time steps; (2) using fewer episodes to solve problems in targeted environments, and (3) maintaining adaptive robustness under noisy perturbations, which outperform the baselines in all tested cases. Our analysis also demonstrates that RET expends potential future research directions in dynamic environments. Code is available from https://github.com/HaolingZHANG/ReverseEncodingTree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源