论文标题

最大单频电磁响应

Maximal single-frequency electromagnetic response

论文作者

Kuang, Zeyu, Zhang, Lang, Miller, Owen D.

论文摘要

现代的纳米光子和元光学设备利用大量的结构性自由度来增强光线相互作用。一个基本的问题是这样的增强能力有多大。我们开发了一个分析框架,以跨越近场和远场状态的单频电磁反应得出上限,对于任何材料,它们自然融合了材料和辐射诱导的损失的串联效应。我们的框架依赖于在任何散射器中引起的极化场的功率保存定律。它统一了先前的理论在光散射边界上,并揭示了最佳纳米光设计的新见解,其应用包括远场散射,近场局部密度工程工程,最佳的波前塑形以及完美吸收剂的设计。我们的边界预测,任意图案化的完美吸收剂的最小厚度极为大,范围从可见波长的典型材料的50--100 nm到微米尺度的厚度,用于红外波长的极性介电。我们使用逆设计来发现接近最低厚度的完美吸收界边界的元表面结构。

Modern nanophotonic and meta-optical devices utilize a tremendous number of structural degrees of freedom to enhance light--matter interactions. A fundamental question is how large such enhancements can be. We develop an analytical framework to derive upper bounds to single-frequency electromagnetic response, across near- and far-field regimes, for any materials, naturally incorporating the tandem effects of material- and radiation-induced losses. Our framework relies on a power-conservation law for the polarization fields induced in any scatterer. It unifies previous theories on optical scattering bounds and reveals new insight for optimal nanophotonic design, with applications including far-field scattering, near-field local-density-of-states engineering, optimal wavefront shaping, and the design of perfect absorbers. Our bounds predict strikingly large minimal thicknesses for arbitrarily patterned perfect absorbers, ranging from 50--100 nm for typical materials at visible wavelengths to micrometer-scale thicknesses for polar dielectrics at infrared wavelengths. We use inverse design to discover metasurface structures approaching the minimum-thickness perfect-absorber bounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源