论文标题

3D Muskat问题的全球良好性与中等坡度

Global wellposedness for the 3D Muskat problem with medium size slope

论文作者

Cameron, Stephen

论文摘要

每当初始接口具有额定值的生长和斜率$ || \ nabla_x f_0 || _ {l^\ infty} <5^{ - 1/2} $时,我们证明了稳定制度中3D Muskat问题的全球经典解决方案的存在和独特性。我们在这些假设下表明,该方程在根本上是抛物面,满足了比较原理。应用连续性技术的模量,我们表明粗糙的初始数据立即变成$ c^{1,1} $,曲率衰减如$ o(t^{ - 1})$。

We prove the existence and uniqueness of global, classical solutions to the 3D Muskat problem in the stable regime whenever the initial interface has sublinear growth and slope $||\nabla_x f_0||_{L^\infty}< 5^{-1/2}$. We show under these assumptions that the equation is fundamentally parabolic, satisfying a comparison principle. Applying the modulus of continuity technique, we show that rough initial data instantly becomes $C^{1,1}$ with the curvature decaying like $O(t^{-1})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源